一、教学目标
【知识与技能】
了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明与计算。
【过程与方法】
在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力。
【情感态度与价值观】
在主动参与数学活动的过程中,增强探究问题的兴趣、有合作交流的意识、动手操作的能力与探索精神,获得解决问题的成功体验。
二、教学重难点
【重点】
角的平分线的性质的证明及应用。
【难点】
角的平分线的性质的探究。
三、教学过程
(一)导入新课
1.复习角平分线的画法
2.利用PPT创设情景:
如图是小明制作的风筝,他根据AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?
(二)生成新知
探究做一做(学生独立完成,同组同学交流,找生到黑板上板演.教师纠正答案)
如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开.观察两次折叠形成的三条折痕,你能得出什么结论?试着证明你的结论.
结论:角的平分线的性质:角的平分线上的点到角的两边的距离相等.
证明步骤:
①明确命题中的已知和求证;
②根据题意,画出图形,并用数学符号表示已知和求证;
③经过分析,找出由已知推出求证的途径,写出证明过程.
(三)深化新知
思考:角的平分线的性质在应用时应该注意什么问题?(由学生讨论汇报)
(四)应用新知
1.例题:解决导入中PPT的问题
2.练一练:(1) 下面四个图中,点P都在∠AOB的平分线上,则图形_____ 中PD=PE.
(2)下图中,PD⊥OA,PE⊥OB,垂足分别为点D、E,则图中PD=PE吗?
(3)在S区有一个贸易市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路,怎样修才能使路最短?它们有怎样的数量关系呢?
(五)小结作业
小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?
作业:必做题,选做题,思考题:角平分线性质的逆命题并证明。
四、板书设计
五、教学反思
相关内容推荐
(责任编辑:王珂凡)