参考答案
一.选择题
1.C 【解析】由2a3+326=5b9可得,a+2=b,又5b9能被9整除,可知b=4,则a=2,所以a+b=2+4=6。
2.C 【解析】长方形有两条对称轴,A排除。等边三角形有三条对称轴,B排除。圆有无数条对称轴,D排除。等腰三角形只有一条对称轴,即为底边上的中线(底边上的高或顶角平分线)。
3.C 【解析】略
4.B 【解析】由A与B为互不相容事件可知,A∩B=?,即P(AB)=0且P(A+B)=P(A∪B)=P(A)+P(B)。故选B。
5.C 【解析】2能被2整除,但它为质数,故A错误。4能被2整除,但4是合数而不是质数,故B错误。奇数都不能被2整除,能被2整除的数都为偶数。
6.B 【解析】盐水有5+75=80(克),故盐占盐水的5/80=1/16。
7.A 【解析】13为分数但不是有限小数,B排除。同样13也是真分数,但也不是有限小数,排除C。43是假分数,也不是有限小数,D排除。故选A。
8.B 【解析】如果是自然堆码,最多的情况是:每相邻的下一层比它的上一层多1根,即构成了以5为首项,1为公差的等差数列,故可知21为第17项,从而这堆钢管最多能堆(5+21)×172=221(根)。
9.B 【解析】由曲线过点(1,-3)排除A、C项。由此曲线过点(2,11)排除D,故选B。y=2x3-5显然过点(1,-3)和(2,11),且它在(x,y)处的切线斜率为6x2,显然满足与x2成正比。
10.C【解析】对f(x)=xln(2-x)+3x2-2limx→1f(x)两边同时取极限为:limx→1f(x)=0+3-2limx→1f(x),即3limx→1f(x)=3,故limx→1f(x)=1。故选C。
二.填空题
1.21 【解析】 设分母应增加x,则2+67+x=27,即:2x+14=56,解得x=21。
2.1023456789102346 【解析】 越小的数字放在越靠左的数位上得到的数字越小,但零不能放在最左边的首数位上。故可得最小的十位数为1023456789,四舍五入到万位为102346万。
3.60分钟 【解析】由题干可知,本题的实质是求20与15的最小公倍数。因为20=2×2×5,15=3×5,所以它们的最小公倍数为2×2×3×5=60。即再遇到同时发车至少再过60分钟。
4.y=1 【解析】与x轴平行的直线的斜率为0,又在y轴上的截距为1,由直线方程的斜截式可得,该直线的方程为y=1。
5.6π 9π平方厘米 【解析】正方形中剪一个最大的圆,即为该正方形的内切圆。故半径r=12×6=3(厘米),所以它的周长为2πr=2π×3=6π(厘米),面积为πr2=π×32=9π(厘米2)。
6.17 10【解析】由题干知△+2□=44(1),3△+2□=64(2),(2)-(1)得2△=20,则△=10,从而2□=44-10,解得□=17。
7.1199 【解析】略
8.-1 【解析】间断点即为不连续点,显然为x+1=0时,即x=-1。
9.12 【解析】由f(x)=x可知,f′(x)=(x)′=(x12)′=12x-12=12x,故f′(1)=12×1=12。
10.1 【解析】因为f′(x)=3x2≥0,所以f(x)在定义域R上单调递增,所以在[-1,1]上也递增,故最大值在x=1处取得,即为f(1)=1。
三.解答题
1.解:设全年级总人数为x人,则x·48%+4x=52%,解得:x=100
所以没有参加课外活动的人数为100×(1-52%)=48(人)。
2.解:[112+(3.6-115)÷117]÷0.8
=[32+(335-115)÷87]÷45
=(32+125×78)÷45
=(32+2110)÷45
=185×54
=92。
四.分析题
参考答案:成因:没有理解整除的概念,对于数的整除是指如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a。概念要求除数应为自然数,0.4是小数。而且混淆了整除与除尽两个概念。故错误。
预防措施:在讲整除概念时,应让学生清楚被除数、除数和商所要求数字满足的条件。即被除数应为整数,除数应为自然数,商应为整数。并且讲清整除与除尽的不同。
五.案例题
1. 参考答案 分析建议:张教师主要用了抽象与概括的思想方法;李老师用了教学模型的方法,先从实际问题中抽象出数学模型,然后通过逻辑推理得出模型的解,最后用这一模型解决实际问题。教师可从这方面加以论述。
2. 参考答案:略。
(责任编辑:Cindy)