http://fujian.hteacher.net 2021-02-25 14:02 福建教师招聘 [您的教师考试网]
3.不等式、数列
考试内容:
不等式。不等式的性质。不等式的证明。不等式的解法。含绝对值不等式。基本不等式。数列的概念。等差数列与等比数列。数列的前n项和。数列极限的概念与运算。
考试要求:
(1)掌握不等式的基本性质,会用分析法、综合法、比较法和反证法证明简单不等式。(2)了解不等式的同解原理。掌握简单不等式的解法,理解含绝对值不等式及其解法。
(3)理解算术平均与几何平均不等式、贝努利不等式、柯西不等式以及应用。
(4)理解等差数列、等比数列的概念、通项公式以及前n项和公式的推导方法,掌握公式并能熟练运用。
(5)掌握线性递归数列的概念及其通项公式的求法。
(6)理解数列极限的概念、意义以及运算法则,掌握数列极限的计算方法。
4.排列组合与二项式定理
考试内容:
排列。组合。二项式定理。
考试要求:
(1)了解分类计数原理和分步计数原理。
(2)理解排列、组合、排列数、组合数等概念,掌握常见排列或组合问题的解决方法。
(3)掌握相异元素允许重复的排列与组合、不尽相异元素的排列与组合问题的解法。理解抽屉原理以及应用。
(4)掌握二项式定理以及二项展开式的性质以及应用。
5.向量与复数
考试内容:
向量的概念。向量的运算。向量基本定理及坐标表示。向量的运用。复数的概念。复数的运算。
考试要求:
(1)了解平面向量的概念、意义、几何表示以及平面向量运算的法则。掌握平面向量的加法与减法、实数与平面向量的积、平面向量的坐标表示、平面向量的数量积。
(2)了解空间向量的概念,了解空间向量的基本定理及其意义;掌握空间向量的线性运算及其坐标表示;掌握空间向量的数量积及其坐标表示。理解直线的方向向量与平面的法向量。能用向量方法证明有关直线和平面位置关系的一些定理;能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的应用。
(3)了解数系扩充的必要性,理解复数的概念、复数的运算及其几何意义,掌握复数代数形式的加、减、乘、除运算,掌握复数三角形式乘、除的运算。
6. 推理与证明
考试内容:
推理的概念。直接证明和间接证明。反证法。数学归纳法。
考试要求:
(1)了解归纳推理和类比推理的含义,能利用归纳和类比等进行简单的推理,了解归纳推理和类比推理在数学发现中的作用;了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解归纳推理、类比推理和演绎推理之间的联系和差异。
(2)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点。了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
7.立体几何
考试内容:
简单几何体的结构。三视图。直观图。平面的基本性质。空间两直线、两平面、直线与平面的位置关系。多面体。柱、锥、台、球。
考试要求:
(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图。
(2)了解球、棱柱、棱锥、台、球的表面积和体积的计算公式。
(3)了解空间两直线、两平面、直线与平面的几种位置关系;了解可以作为推理依据的公理和定理,并能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题(延伸平面几何的相关命题)。
8.解析几何
考试内容:
直线的斜率。直线的方程。圆的方程。曲线与方程。椭圆、双曲线、抛物线。空间直线与平面。
推荐阅读:
责任编辑:张欣
公众号
视频号
小红书
小程序
APP
京ICP备16044424号-2京公网安备 11010802023064号 Copyright © 2001-2024 huatu.com 北京中师华图文化发展有限公司 版权所有