http://fujian.hteacher.net 2024-01-11 17:58 福建教师招聘 [您的教师考试网]
考试内容
计量单位。进率。换算。
考试要求
(1)理解常用的时间单位、长度单位、质量单位、面积单位、体积(或容积)单位及其进率。
(2)熟练运用单位间的进率进行换算。
4.式与方程
考试内容
代数式。整式。分式。方程。
考试要求
(1)理解用字母表示数的意义,能分析具体问题中的简单数量关系,并用代数式表示,会求代数式的值。
(2)了解整数指数幂的意义和基本性质;理解整式的概念,能进行简单的整式加法、减法、乘法运算。
(3)了解分式的概念,能利用分式的基本性质进行分式加、减、乘、除运算。
(4)理解等式的性质;理解方程、方程的解、解方程等概念。
(5)能根据具体问题中的数量关系列出方程;熟练解一元一次方程、一元二次方程、二元一次方程组、可化为一元一次方程的分式方程;能根据具体问题的实际意义,检验结果是否合理。
5.不等式
考试内容
不等式的概念。不等式的性质。不等式的证明。不等式的解法。均值不等式。
考试要求
(1)了解不等式的概念,掌握不等式的性质及其证明。
(2)会用分析法、综合法、比较法证明简单的不等式。
(3)掌握一元一次不等式、一元二次不等式、可化为一元一次或一元二次不等式的方式、根式不等式、含绝对值符号不等式的解法。
(4)能够根据具体问题中的数量关系,列出不等式或不等式组解决简单的问题。
(5)掌握二元均值不等式并能简单予以应用。
6.集合与常用逻辑用语
考试内容
集合的概念与表示。基本关系。基本运算。区间。常用逻辑用语。
考试要求
(1)理解集合及其元素的含义;掌握元素与集合间的关系;掌握集合的表示方法。
(2)理解集合之间的关系。
(3)了解全集与空集的含义;理解两个集合的并集、交集、补集的含义并能够进行简单的集合运算。
(4)理解区间的定义;掌握区间的表示方法。
(5)理解必要条件、充分条件、充要条件的意义;能正确使用存在量词对全称量词进行否定,能正确使用全称量词对存在量词进行否定。
7.函数
考试内容
函数概念及其表示。函数的基本性质。反函数与复合函数。基本初等函数的图象与性质。有理指数幂的运算及性质。对数的运算及性质。同角的三角函数的基本关系式。三角函数的诱导公式。两角和与差、二倍角的正弦、余弦、正切公式。初等函数。二分法与求方程近似解、函数与数学模型。
考试要求
(1)了解函数的形成与发展;掌握函数的定义及函数的三要素;会求简单函数的定义域和值域;会求简单函数的反函数。
(2)理解常量、变量的意义和一次函数、正比例函数、反比例函数、二次函数的概念;能够运用一次函数、正比例函数、反比例函数、二次函数的有关知识解决某些简单的实际问题。
(3)理解函数奇偶性、单调性、有界性、周期性的概念;能够判断简单函数的奇偶性、单调性、有界性和周期性。
(4)了解复合函数的概念,能够将复合函数分解成简单函数。
(5)理解分数指数幂的概念;掌握有理指数幂的运算及性质;理解对数的概念;掌握对数的运算及性质。
(6)了解初等函数的概念;掌握幂函数、指数函数、对数函数、三角函数的定义、性质和图象。
(7)掌握同角三角函数的基本关系,正弦、余弦函数的诱导公式,两角和与差、二倍角的正弦、余弦、正切公式。
(8)了解初等函数的概念。能够运用初等函数的图象与性质解决某些简单的实际问题;了解函数零点与方程解的关系,了解用二分法求方程近似解。
8.数列
考试内容
数列的概念。等差数列的概念、通项公式、前n项和公式。等比数列的概念、通项公式、前n项和公式。
考试要求
(1)理解数列的概念;理解数列通项公式的意义;了解递推公式是给出数列的一种方法,能够根据递推公式写出数列的前若干项。
(2)理解等差数列的概念;掌握等差数列的通项公式与前n项和公式,并能够运用这些知识解决一些的简单实际问题。
(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能够运用这些知识解决一些的简单实际问题。
9.平面向量代数
考试内容
平面向量的概念。平面向量的加减法。数与平面向量的乘法。平面向量的坐标表示。平面向量数量积。复数。
推荐阅读:
责任编辑:云云
公众号
视频号
小红书
小程序
APP
京ICP备16044424号-2京公网安备 11010802023064号 Copyright © 2001-2024 huatu.com 北京中师华图文化发展有限公司 版权所有